Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 85: 104534, 2020 11.
Article in English | MEDLINE | ID: mdl-32920195

ABSTRACT

BACKGROUND: Nontyphoidal Salmonella (NTS) are associated with both diarrhea and bacteremia. Antimicrobial resistance (AMR) is common in NTS in low-middle income countries, but the major source(s) of AMR NTS in humans are not known. Here, we aimed to assess the role of animals as a source of AMR in human NTS infections in Vietnam. We retrospectively combined and analyzed 672 NTS human and animal isolates from four studies in southern Vietnam and compared serovars, sequence types (ST), and AMR profiles. We generated a population structure of circulating organisms and aimed to attribute sources of AMR in NTS causing invasive and noninvasive disease in humans using Bayesian multinomial mixture models. RESULTS: Among 672 NTS isolates, 148 (22%) originated from human blood, 211 (31%) from human stool, and 313 (47%) from animal stool. The distribution of serovars, STs, and AMR profiles differed among sources; serovars Enteritidis, Typhimurium, and Weltevreden were the most common in human blood, human stool, and animals, respectively. We identified an association between the source of NTS and AMR profile; the majority of AMR isolates were isolated from human blood (p < 0.001). Modelling by ST-AMR profile found chickens and pigs were likely the major sources of AMR NTS in human blood and stool, respectively; but unsampled sources were found to be a major contributor. CONCLUSIONS: Antimicrobial use in food animals is hypothesized to play role in the emergence of AMR in human pathogens. Our cross-sectional population-based approach suggests a significant overlap between AMR in NTS in animals and humans, but animal NTS does explain the full extent of AMR in human NTS infections in Vietnam.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Disease Vectors , Drug Resistance, Bacterial/drug effects , Salmonella Infections/drug therapy , Salmonella Infections/transmission , Salmonella typhimurium/drug effects , Serogroup , Animals , Bacterial Zoonoses/epidemiology , Chickens/virology , Cross-Sectional Studies , Disease Transmission, Infectious/veterinary , Ducks/virology , Genetic Variation , Microbial Sensitivity Tests , Retrospective Studies , Rodentia/virology , Salmonella Infections/epidemiology , Swine/virology , Vietnam/epidemiology
2.
mBio ; 9(5)2018 09 04.
Article in English | MEDLINE | ID: mdl-30181247

ABSTRACT

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates isolated in Vietnam. We found limited evidence for the zoonotic transmission of S Typhimurium. However, we describe a chain of events where a pandemic monophasic variant of S Typhimurium (serovar I:4,[5],12:i:- sequence type 34 [ST34]) has been introduced into Vietnam, reacquired a phase 2 flagellum, and acquired an IncHI2 multidrug-resistant plasmid. Notably, these novel biphasic ST34 S Typhimurium variants were significantly associated with iNTS in Vietnamese HIV-infected patients. Our study represents the first characterization of novel iNTS organisms isolated outside sub-Saharan Africa and outlines a new pathway for the emergence of alternative Salmonella variants into susceptible human populations.IMPORTANCESalmonella Typhimurium is a major diarrheal pathogen and associated with invasive nontyphoid Salmonella (iNTS) disease in vulnerable populations. We present the first characterization of iNTS organisms in Southeast Asia and describe a different evolutionary trajectory from that of organisms causing iNTS in sub-Saharan Africa. In Vietnam, the globally distributed monophasic variant of Salmonella Typhimurium, the serovar I:4,[5],12:i:- ST34 clone, has reacquired a phase 2 flagellum and gained a multidrug-resistant plasmid to become associated with iNTS disease in HIV-infected patients. We document distinct communities of S Typhimurium and I:4,[5],12:i:- in animals and humans in Vietnam, despite the greater mixing of these host populations here. These data highlight the importance of whole-genome sequencing surveillance in a One Health context in understanding the evolution and spread of resistant bacterial infections.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella Infections, Animal/epidemiology , Salmonella Infections, Animal/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Animals , Bacteremia/epidemiology , Bacteremia/microbiology , Carrier State/epidemiology , Carrier State/microbiology , Chickens , Disease Transmission, Infectious , Ducks , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Genetic Variation , Genotype , HIV Infections/complications , Humans , Immunocompromised Host , Molecular Epidemiology , Salmonella Infections/transmission , Salmonella Infections, Animal/transmission , Salmonella typhimurium/genetics , Salmonella typhimurium/isolation & purification , Swine , Vietnam/epidemiology , Whole Genome Sequencing , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/transmission
3.
J Med Microbiol ; 58(Pt 12): 1585-1592, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19696153

ABSTRACT

Antimicrobial-resistant pathogenic members of the Enterobacteriaceae are a well-defined global problem. We hypothesized that one of the main reservoirs of dissemination of antimicrobial resistance genes in Vietnam is non-pathogenic intestinal flora, and sought to isolate antimicrobial-resistant organisms from hospitalized patients and non-hospitalized healthy individuals in Ho Chi Minh City. The results identified substantial faecal carriage of gentamicin-, ceftazidime- and nalidixic acid-resistant members of the Enterobacteriaceae in both hospitalized patients and non-hospitalized healthy individuals. A high prevalence of quinolone resistance determinants was identified, particularly the qnrS gene, in both community- and hospital-associated strains. Furthermore, the results demonstrated that a combination of quinolone resistance determinants can confer resistance to nalidixic acid and ciprofloxacin, even in the apparent absence of additional chromosomal resistance mutations in wild-type strains and laboratory strains with transferred plasmids. These data suggest that intestinal commensal organisms are a significant reservoir for the dissemination of plasmid-mediated quinolone resistance in Ho Chi Minh City.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae/drug effects , Plasmids/genetics , Quinolones/pharmacology , Adult , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier State , Child , Child, Preschool , Enterobacteriaceae/genetics , Gene Expression Regulation, Bacterial/physiology , Humans , Infant , Mutation , Vietnam/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...